首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1304篇
  免费   134篇
  国内免费   24篇
化学   174篇
晶体学   2篇
力学   129篇
综合类   45篇
数学   637篇
物理学   475篇
  2023年   21篇
  2022年   38篇
  2021年   31篇
  2020年   40篇
  2019年   29篇
  2018年   25篇
  2017年   40篇
  2016年   46篇
  2015年   46篇
  2014年   81篇
  2013年   88篇
  2012年   62篇
  2011年   70篇
  2010年   66篇
  2009年   62篇
  2008年   73篇
  2007年   65篇
  2006年   62篇
  2005年   55篇
  2004年   37篇
  2003年   48篇
  2002年   40篇
  2001年   42篇
  2000年   18篇
  1999年   27篇
  1998年   26篇
  1997年   19篇
  1996年   20篇
  1995年   24篇
  1994年   17篇
  1993年   19篇
  1992年   17篇
  1991年   14篇
  1990年   4篇
  1989年   9篇
  1988年   3篇
  1987年   7篇
  1986年   11篇
  1985年   5篇
  1984年   6篇
  1982年   6篇
  1981年   3篇
  1980年   6篇
  1979年   3篇
  1978年   5篇
  1977年   8篇
  1976年   8篇
  1975年   3篇
  1974年   3篇
  1970年   1篇
排序方式: 共有1462条查询结果,搜索用时 16 毫秒
1.
The study explored the impact of Please Go Bring Me-COnceptual Model-based Problem Solving (PGBM-COMPS) computer tutoring system on multiplicative reasoning and problem solving of students with learning disabilities. The PGBM-COMPS program focused on enhancing the multiplicative reasoning and problem solving through nurturing fundamental mathematical ideas and moving students above and beyond the concrete level of operation. This is achieved by taking advantages of the constructivist approach from mathematics education and explicit conceptual model-based problem solving approach from special education. Participants were three elementary students with learning disabilities (LD). A mixed method design was employed to investigate the effect of the PGBM-COMPS program on enhancing students’ multiplicative reasoning and problem solving. It was found that the PGBM-COMPS program significantly improved participating students’ problem solving performance not only on researcher developed criterion tests but also on a norm-referenced standardized test. Qualitative and quantities data from this study indicate that, in addition to nurturing fundamental concept of composite units, it is necessary to help students to understand underlying problem structures and move toward mathematical model-based problem representation and solving for generalized problem solving skills.  相似文献   
2.
《Physics letters. A》2020,384(27):126686
It has recently been argued in Aharonov et al. (2016) that quantum mechanics violates the Pigeon Counting Principle (PCP) which states that if one distributes three pigeons among two boxes there must be at least two pigeons in one of the boxes. However, this conclusion cannot be justified by rigorous theoretical arguments. The issue is further complicated by experimental confirmation of the transition amplitudes predicted in this paper that nevertheless do not support the conclusion of PCP violation. Here we prove via a set of operator identities that the PCP is not violated within quantum mechanics, regardless of interpretation.  相似文献   
3.
This paper applies the entropy-based fractal indexing scheme that enables the grid environment for fast indexing and querying. It addresses the issue of fault tolerance and load balancing-based fractal management to make computational grids more effective and reliable. A fractal dimension of a cloud of points gives an estimate of the intrinsic dimensionality of the data in that space. The main drawback of this technique is the long computing time. The main contribution of the suggested work is to investigate the effect of fractal transform by adding R-tree index structure-based entropy to existing grid computing models to obtain a balanced infrastructure with minimal fault. In this regard, the presented work is going to extend the commonly scheduling algorithms that are built based on the physical grid structure to a reduced logical network. The objective of this logical network is to reduce the searching in the grid paths according to arrival time rate and path’s bandwidth with respect to load balance and fault tolerance, respectively. Furthermore, an optimization searching technique is utilized to enhance the grid performance by investigating the optimum number of nodes extracted from the logical grid. The experimental results indicated that the proposed model has better execution time, throughput, makespan, latency, load balancing, and success rate.  相似文献   
4.
5.
This article reports on the implementation of a soft computing technique based on artificial neural networks (ANNs) in analyzing the wear performance of a new class of hybrid composites filled with Linz–Donawitz slag (LDS). LDS is a major solid waste generated in huge quantities during steel making. It comes from slag formers such as burned lime/dolomite and from oxidizing of silica, iron etc. while refining the iron into steel in the LD furnace. In this work, hybrid composites consisting of short glass fiber (SGF) reinforced epoxy filled with different LDS content (0, 7.5, 15 and 22.5 wt%) are prepared by simple hand lay‐up technique. Solid particle erosion trials, as per ASTM G 76 test standards, are conducted on the composite samples following a well‐planned experimental schedule based on Taguchi design of experiments. Significant process parameters predominantly influencing the rate of erosion are identified. The study reveals that the LDS content is the most significant among various factors influencing the wear rate of these composites. Further, a model based on ANN for the prediction of erosion performance of these composites is implemented. The ANN prediction profiles for the characteristic wear properties exhibit very good agreement with the measured results demonstrating that a well‐trained network has been created. The simulated results explaining the effect of significant process variables on the wear rate indicate that the trained neural network possesses enough generalization capability of predicting wear rate even beyond the experimental range. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
6.
The conformational samplings are indispensible for obtaining reliable canonical ensembles, which provide statistical averages of physical quantities such as free energies. However, the samplings of vast conformational space of biomacromolecules by conventional molecular dynamics (MD) simulations might be insufficient, due to their inadequate accessible time‐scales for investigating biological functions. Therefore, the development of methodologies for enhancing the conformational sampling of biomacromolecules still remains as a challenging issue in computational biology. To tackle this problem, we newly propose an efficient conformational search method, which is referred as TaBoo SeArch (TBSA) algorithm. In TBSA, an inverse energy histogram is used to select seeds for the conformational resampling so that states with high frequencies are inhibited, while states with low frequencies are efficiently sampled to explore the unvisited conformational space. As a demonstration, TBSA was applied to the folding of a mini‐protein, chignolin, and automatically sampled the native structure (Cα root mean square deviation < 1.0 Å) with nanosecond order computational costs started from a completely extended structure, although a long‐time 1‐µs normal MD simulation failed to sample the native structure. Furthermore, a multiscale free energy landscape method based on the conformational sampling of TBSA were quantitatively evaluated through free energy calculations with both implicit and explicit solvent models, which enable us to find several metastable states on the folding landscape. © 2015 Wiley Periodicals, Inc.  相似文献   
7.
Xi Zhu 《中国物理 B》2023,32(1):18502-018502
Memristive stateful logic is one of the most promising candidates to implement an in-memory computing system that computes within the storage unit. It can eliminate the costs for the data movement in the traditional von Neumann system. However, the instability in the memristors is inevitable due to the limitation of the current fabrication technology, which incurs a great challenge for the reliability of the memristive stateful logic. In this paper, the implication of device instability on the reliability of the logic event is simulated. The mathematical relationship between logic reliability and redundancy has been deduced. By combining the mathematical relationship with the vector-matrix multiplication in a memristive crossbar array, the logic error correction scheme with high throughput has been proposed. Moreover, a universal design paradigm has been put forward for complex logic. And the circuit schematic and the flow of the scheme have been raised. Finally, a 1-bit full adder (FA) based on the NOR logic and NOT logic is simulated and the mathematical evaluation is performed. It demonstrates the scheme can improve the reliability of the logic significantly. And compared with other four error corrections, the scheme which can be suitable for all kinds of R-R logics and V-R logics has the best universality and throughput. Compared with the other two approaches which also need additional complementary metal-oxide semiconductor (CMOS) circuits, it needs fewer transistors and cycles for the error correction.  相似文献   
8.
张鑫  孙力  田超  王文保 《大学化学》2017,32(3):70-74
"云计算"在教育教学中的应用构建了"云计算"辅助教学的概念。21世纪的教学方式是以学为主、以教为辅,学习的方式也从个人学习变成了协作学习,这正是"云计算"辅助教学的核心。本文回顾了计算机辅助教学的发展,对"云计算"学习环境与协作学习模型的构建进行了分析探讨,并以"大学化学云学堂"为案例解析了"云计算"学习环境与协作学习模型建立的实际应用,阐述了其设计思路和实现方法,以期为"云计算"辅助学习与教学研究提供一些帮助。  相似文献   
9.
童毅  吴国民  赵小科 《数学杂志》2017,37(2):376-382
本文研究了均衡约束数学规划(MPEC)问题.利用其弱稳定点,获得了一种新的约束规格–MPEC的伪正规约束规格.用一种简单的方式,证明了该约束规格是介于MPEC-MFCQ(即MPEC,Mangasarian-Fromowitz约束规格)与MPEC-ACQ(即MPEC,Abadie约束规格)之间的约束规格,因此该约束规格也可以导出MPEC问题的M-稳定点.最后通过两个例子,说明了该约束规格与MPEC-MFCQ以及与MPEC-ACQ之间是严格的强弱关系.  相似文献   
10.
Nonlinear least-squares regression is a valuable tool for gaining chemical insights into complex systems. Yet, the success of nonlinear regression as measured by residual sum of squares (RSS), correlation, and reproducibility of fit parameters strongly depends on the availability of a good initial solution. Without such, iterative algorithms quickly become trapped in an unfavorable local RSS-minimum. For determining an initial solution, a high-dimensional parameter space needs to be screened, a process that is very time-consuming but can be parallelized. Another advantage of parallelization is equally important: After determining initial solutions, the used processors can be tasked to each optimize an initial guess. Even if several of these optimizations become stuck in a shallow local RSS-minimum, other processors continue and improve the regression outcome. A software package for parallel processing-based constrained nonlinear regression (RegressionLab) has been developed, implemented, and tested on a variety of hardware configurations. As proof-of-principle, microalgae to environment interactions have been studied by infrared attenuated total reflection spectroscopy. Additionally, light microscopy has been used to monitor cell production. It is shown that spectroscopic data sets with 10,000?s of data points and >1000 nonlinear model parameters as well as imaging data with 100,000s of data points and >2000 nonlinear model parameters may now be investigated by constrained nonlinear regression. Acceleration factors of up to 8.1 have been obtained which is of high practical relevance when computations take weeks on single-processor machines. Solely using parallel processing, the RSS values may be improved up to a factor of 5.5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号